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CS 188: Artificial Intelligence

Spring 2010

Lecture 14: Bayes’ Nets

3/4/2010

Pieter Abbeel – UC Berkeley

Many slides throughout the course adapted from Dan Klein, Stuart 

Russell, Andrew Moore

Announcements

� Assignments

� P3 due tonight

� W4 going out tonight

� Midterm

� 3/18, 6-9pm, 0010 Evans  

� No lecture on 3/18
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Probabilistic Inference

� Probabilistic inference: compute a desired probability from 

other known probabilities (e.g. conditional from joint)

� We generally compute conditional probabilities 

� P(on time | no reported accidents) = 0.90

� These represent the agent’s beliefs given the evidence

� Probabilities change with new evidence:

� P(on time | no accidents, 5 a.m.) = 0.95

� P(on time | no accidents, 5 a.m., raining) = 0.80

� Observing new evidence causes beliefs to be updated
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Inference by Enumeration

� P(sun)?

� P(sun | winter)?

� P(sun | winter, warm)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05

winter cold sun 0.15

winter cold rain 0.20
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Inference by Enumeration

� General case:
� Evidence variables: 

� Query* variable:

� Hidden variables:

� We want:

� First, select the entries consistent with the evidence

� Second, sum out H to get joint of Query and evidence:

� Finally, normalize the remaining entries to conditionalize

� Obvious problems:
� Worst-case time complexity O(dn) 

� Space complexity O(dn) to store the joint distribution

All variables

* Works fine with 

multiple query 

variables, too

The Product Rule

� Sometimes have conditional distributions but want the joint

� Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.066
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The Chain Rule

� More generally, can always write any joint distribution as 
an incremental product of conditional distributions

� Why is this always true?
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Bayes’ Rule

� Two ways to factor a joint distribution over two variables:

� Dividing, we get:

� Why is this at all helpful?
� Lets us build one conditional from its reverse

� Often one conditional is tricky but the other one is simple

� Foundation of many systems we’ll see later (e.g. ASR, MT)

� In the running for most important AI equation!

That’s my rule!
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Inference with Bayes’ Rule

� Example: Diagnostic probability from causal probability:

� Example:

� m is meningitis, s is stiff neck

� Note: posterior probability of meningitis still very small

� Note: you should still get stiff necks checked out!  Why?

Example

givens
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Ghostbusters, Revisited

� Let’s say we have two distributions:
� Prior distribution over ghost location: P(G)

� Let’s say this is uniform

� Sensor reading model: P(R | G)

� Given: we know what our sensors do

� R = reading color measured at (1,1)

� E.g. P(R = yellow | G=(1,1)) = 0.1

� We can calculate the posterior 
distribution P(G|r) over ghost locations 
given a reading using Bayes’ rule:
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Ghostbusters, Revisited

� P(G): Prior distribution over ghost location

� Sensor reading model: P(R | G)

� Bayes’ rule:
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R P

r .8

o .18

y .02

g 0

R P

r .2

o .5

y .27

g .03

R P

r 0

o .1

y .3

g .6

R P

r .05

o .15

y .5

g .3

P(R | 0) P(R | 1) P(R | 2) P(R | 3)

Independence

� Two variables are independent if:

� This says that their joint distribution factors into a product two 
simpler distributions

� Another form:

� We write: 

� Independence is a simplifying modeling assumption
� Empirical joint distributions: at best “close” to independent

� What could we assume for {Weather, Traffic, Cavity, 
Toothache}? 13
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Example: Independence?

T W P

warm sun 0.4

warm rain 0.1

cold sun 0.2

cold rain 0.3

T W P

warm sun 0.3

warm rain 0.2

cold sun 0.3

cold rain 0.2

T P

warm 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Example: Independence

� N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5
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Probabilistic Models
� Models describe how (a portion of) the world works

� Models are always simplifications
� May not account for every variable

� May not account for all interactions between variables

� “All models are wrong; but some are useful.”
– George E. P. Box

� What do we do with probabilistic models?
� We (or our agents) need to reason about unknown variables, 

given evidence

� Example: explanation (diagnostic reasoning)

� Example: prediction (causal reasoning)

� Example: value of information
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Probabilistic Models

� For n variables with domain sizes d, joint distribution 
table with dn -1 free parameters  [recall probabilities sum to one]

� Size of representation if we use the chain rule

Concretely, counting the number of free parameters 
accounting for that we know probabilities sum to one:

(d-1) + d(d-1) + d2(d-1) + … + dn-1 (d-1) 

= (dn-1)/(d-1) (d-1)

= dn - 1

[why do both representations have the same number of free parameters?] 17
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Conditional Independence

� P(Toothache, Cavity, Catch)

� If I have a cavity, the probability that the probe catches in it doesn't 
depend on whether I have a toothache:
� P(+catch | +toothache, +cavity) = P(+catch | +cavity)

� The same independence holds if I don’t have a cavity:
� P(+catch | +toothache, ¬cavity) = P(+catch| ¬cavity)

� Catch is conditionally independent of Toothache given Cavity:
� P(Catch | Toothache, Cavity) = P(Catch | Cavity)

� Equivalent statements:
� P(Toothache | Catch , Cavity) = P(Toothache | Cavity)

� P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

� One can be derived from the other easily
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Conditional Independence

� Unconditional (absolute) independence very rare (why?)

� Conditional independence is our most basic and robust 
form of knowledge about uncertain environments:

� What about this domain:
� Traffic

� Umbrella

� Raining

� What about fire, smoke, alarm?
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